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A comparative analysis has been performed, using both the Geometrical Theory of

Diffraction (GTD) and traditional pathlength error analysis techniques, for predicting RF

antenna gain performance and pointing corrections. The NASA/JPL 70-meter antenna

with its shaped surface was analyzed for gravity loading over the range of elevation

angles. Also analyzed were the effects of lateral and axial displacements of the subre-

flector. Significant differences were noted between the predictions of the two methods,

in the effect of subreflector displacements, and in the optimal subreflector positions to

focus a gravity-deformed main reflector. The results are of relevance to future design

procedure.

I. Introduction

Among a number of current trends in high performance

antenna design is the replacement of paraboloid main reflec-

tors and hyperboloid subreflectors with optimally shaped sur-

faces which provide uniform aperture illumination. Quantifi-

cation of various RF gain loss mechanisms, especially those

due to surface imperfections, is essential to understanding

where cost-effective improvements might be realized. The

traditional methods used for antenna gain and pointing analy-

sis have been based on the assumption of paraboloid main

reflectors and hyperboloid subreflectors. Newer methods

*Mr. Schredder, who is assigned on contract to the Ground Antenna

and Facilities Engineering Section, is an employee of Planning Re-

search Corporation, McLean, Virginia.

exist which deal with more general reflector shapes. One such

method is implemented in the JPL Geometric Theory of

Diffraction (GTD) program. This article compares gain and

pointing predictions derived from traditional methods and

GTD analysis under various conditions. The NASA/JPL

70-meter antenna, which has a shaped main reflector and a

shaped subreflector, was used as a test sample. The effect of

lateral and axial offsets of the subreflector was investigated

along with the effect of gravity deformations of the main

reflector with focusing of the subreflector.

II. Traditional Ray-Tracing Methods

For the analysis of gravity deformations of the main

reflector, the traditional and GTD methods use the same set

of nodal displacements, derived from a finite-element struc-
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tural model. These are the X, Y, and Z (axial) components of

symmetric unit-gravity-load deflections (ASsymmetric) and

antisymmetric unit-gravity-load deflections (ASantisymmetric).
The two sets of deflections are combined according to the

following equation:

AS = ASsymmetri c [sin (ELrig) - sin (EL)]

+ ASntisymmetri c [COS(ELrig) - cos (EL)]

whe re:

(1)

S=X,Y, orZ

to yield the deflections at any desired elevation angle (EL).

The rigging elevation angle (ELrig) was arbitrarily set at 45
degrees.

In ray-tracing analysis, the half-pathlength errors are then
fitted to a paraboloid by least squares, and the RMS of resid-

uals of the fit is computed [1]. The deformed antenna is

assumed to be perfectly focused. The RMS value is used in the

Ruze equation [2] to compute the gain loss as follows:

[ [4n(RMS)] 21_ = e expL-__ ]
(2)

where:

g"= efficiency

), = wavelength

The elevation pointing shift due to gravity-loading main

reflector and quadripod deflections is given by:

0 = 0s[sin (ELrig) - sin (EL)] + Oas [cos (ELrig) - COS(EL)]

(3)

where 0s is the pointing shift due to symmetrical gravity load-

ing and 0as is the pointing shift due to antisymmetric loading.

For the 70-m antenna, 0s = 0.0015 degree and Oas = 0.047

degree.

This equation is derived from the finite element model and

the best-fit paraboloid axis tilt. The fitting process also gives

the parameters of the best-fit paraboloid, including its focus.

The position of the subreflector vertex, the subreflector axis

tilt, and the feedhorn phase center shift, as obtained from the

whole antenna structure model, are combined with the main

reflector best-fit geometry. A subreflector focusing offset

table is generated which brings the virtual image of the feed

phase center into coincidence with the best fit main reflector

focus [3]. This is shown in Fig. 1. The pointing shift predicted

by Eq. (3) is added to the shift computed by Eq. (4) to derive
a predicted net shift for the focused antenna.

Gain loss resulting from subreflector offsets is computed

traditionally as follows. Data obtained from running the JPL

Radiation Program [4] allowed the equivalent RMS path-

length error per unit subreflector displacement in lateral and

axial directions to be expressed as functions of focal length to

diameter ratio. For the shaped 70-meter antenna, the approxi-

mating f/D ratio is taken to be 0.389, which gives an RMS

pathlength error of 0.0773 cm per centimeter of axial displace-

ment and 0.0185 cm per centimeter of lateral displacement.

These values are then used in the Ruze equation (Eq. [2] ).

Pointing shift as a function of subreflector lateral displace-

ment for a Cassegrain antenna is predicted by a simple geo-
metric argument, given in [5] :

where:

A y = lateral subreflector displacement

0 = pointing shift in radians

f = focal length

K = beam deviation factor

M = magnification factor

For the 70-m antenna, f = 2722.9 cm, M is estimated as 6.84,
and K is estimated as 0.82.

III. The GTD Method

The GTD program evolved from an electric field integration

program developed in 1978 and modified in 1983.1 The pro-

gram uses modified Jacobi polynomials to describe the radial

dependence of the surface currents induced by the fields

incident on the main reflector. The modified Jacobi poly-

nomials are an orthogonal set with desirable convergence

properties. The program uses two-dimensional Gauss integra-

1y. Rahmat-Samii, "Offset Parabolic Reflector Computer Program for
Analysis of Satellite Communications Antennas," JPL Publication
D-1203 (internal document), Jet Propulsion Laboratory, Pasadena,
California, December 1983.
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tion to determine the coefficients for the eigenfunctions com-

posed of the products of modified Jacobi polynomials and sine
and cosine functions of the azimuth angle. These coefficients

are then used in another series to compute the far-field electric

field pattern.

The program described in JPL Publication D-12031 requires

that the user supply subroutines to compute the following: a

description of the main reflector surface that includes axial

distance (Z) as a function of radius (r) and azimuth angle (¢),

the first derivatives _z/_r, _'z/a¢, and the fields incident on
the main reflector.

The GTD program represents the deformed or undeformed
main reflector as a series of modified Jacobi polynomials

added to a base paraboloid:

Z=EE(Cnm COSr/_b+Dnm sinn_) F n +ZO+--4f
\ max/?1 m

(s)

where:

¢ = azimuth angle

r = radius

Rma x = the radius of the main reflector

f = focal length of base paraboloid

z 0 = arbitrary datum

The program computes two sets of electric and magnetic
fields incident on the main reflector: a pair of fields reflected

from the subreflector and a pair of fields diffracted from the

subreflector. The reflected fields are computed using geomet-

rical optics (GO), while the diffraction field is computed

using the Geometrical Theory of Diffraction (GTD). The

program in this form is documented in JPL Publication
D-2583. 2

IV. GTD Analysis of the 70-Meter Antenna

In this investigation, a number of modifications were made

to the GTD program to accommodate the 70-meter antenna

analysis. An additional data block was generated to provide

storage for Jacobi polynomial coefficients for both the shaped
subreflector and the deformed main reflector (previously, the

2T. Veruttipong, et al., "Dual Shaped and Conic GTD/Jacobi-Bessel
Analysis Programs," JPL Publication D-2583 (internal document),
Jet Propulsion Laboratory, Pasadena, California, July 30, 1985.

program could analyze one or the other, but not both). Also,
a change was made in the sequence in which Jacobi poly-

nomial values were computed and stored and provided a major

increase in execution speed.

Analysis of a gravity-deformed reflector involves the

following five steps:

(1) The computation of node deflections at a given eleva-

tion angle is the same as in the conventional analysis,
and the deflections (u, v, w) are added to the node

coordinates (x, y, z) for an undeflected reflector to
arrive at a set of deflected nodes. The 70-meter model

that was used has 764 nodes for a half-model.

(2) A grid of axial positions z(r, ¢) at evenly spaced
values of radius (r) and azimuth angle (¢) is generated.

The radius varies from zero at the center to Rmax, the
radius of the main reflector, and the azimuth angle

varies from 0 to 360 degrees. To generate the grid, a

set of nine neighboring nodes around each grid point is
used, as shown in Fig. 2. First, three interpolating

parabolas along points 1-2-3, 4-5-6, and 7-8-9 are com-

puted. These parabolas are evaluated at the grid point
radius to give three values of azimuth angle and Z at
this radius.-Then a fourth interpolating parabola is

computed giving Z as a function of angle. This parabola
is evaluated at the grid point angle to yield the interpo-

lated Z value. Typical grid spacing was 416 intervals
in radius and 256 intervals in angle.

(3) The following equation is integrated by standard

numerical methods to generate the Jacobi polynomial

coefficients (Cnm, Dnm) which describe the reflector
surface:

- F'f'
c 2"do do c°snq_Fmn(S)sd¢ds

_SF F '
Dnm 2_rJo .1o sinnCFmn(s) sdcds

(6)

whe re:

S = r/Rma x

en = 1 if n = 0

en = 2 if n _ 0

To represent the gravity-deformed main reflector

shapes, a 7 X 25 set of coefficients was used (n = 0,
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1 .... , 6; m = 0, 1..... 24), which can model 24

ripples in radius and 6 cycles in azimuth angle.

(4) To check the accuracy of the Jacobi polynomial fit,
the reflector surface is reconstructed from the Jacobi

polynomial representation (at the node radii and

angles). To do this, the coefficients determined in

step 3 are entered into Eq. (5). The computed Z

values are compared with the Z values derived from the
finite element model. For gravity deformations, RMS

differences of 0.075 mm (0.003 inch) to 0.175 mm

(0.005 inch) were found. These differences were much

smaller than the gravity deformations.

(5) The coefficients determined in step 3 are also used to

represent the deformed main reflector in the GTD

program.

Figure 3 shows the sequence of computations of both the
traditional and GTD methods.

The Jacobi polynomial representation of the undeflected

main reflector consists of a set of 15 coefficients (n = 0;

m = 0, 1 ..... 14) of polynomials in radius, as there is no

angular dependence of the ideal reflector surface. The
first 15 Jacobi polynomials were sufficient to describe the

deviation of the radial profile from a parabola. This represen-

tation of the "perfect" reflector was used in two ways: (1) to

generate the undeflected node positions for the gravity defor-

mation analysis; and (2) to study the effects of subreflector

displacements.

Among the input variables to the GTD program are the
subreflector and feed positions; the orientations of the main
reflector, subreflector, and feed coordinate systems; and the

RF wavelength. The frequency used in this study was 8.45

GHz, which has a wavelength of 35.48 mm (1.397 in.). The

study was performed with the subreflector pointed at the

X-band horn, as shown in Figs. 4 and 5. The geometry is
shown in more detail in JPL Publication D-1843. 3

V. Results

The following results are compared between GTD and

traditional analysis:

aA. G. Cha and W. A. Imbriale, "Computer Programs for the Synthesis
and Interpolation of 70-m Antenna Reflector Surfaces," JPL Publica-
tion D-1843 (internal document), Jet Propulsion Laboratory, Pasa-
dena, California, November 1984.

(1) Gain loss resulting from subreflector lateral and axial

offsets, and pointing shift due to lateral offsets.

(2) Gain loss and pointing shift as functions of elevation

angle with the subreflector focused.

(3) Prediction of best subreflector offsets to focus a

gravity-deformed antenna as a function of elevation

angle.

It should be noted that the subreflector offsets are given in

units of the wavelength at 8.45 GHz.

Figure 6 shows gain loss for a perfect main reflector as a

function of axial subreflector displacement predicted by the

two methods. For positive axial displacements (away from the

main reflector) the agreement is very close, but the difference
between the two curves is sizable for negative displacements.

Table 1 shows the gain loss predicted by the two methods
for lateral subreflector displacements, while Table 2 shows the

pointing shift predicted. There is a large difference in the pre-

dicted gain loss; however, both methods predict a square-law
dependence of gain loss on lateral subreflector displacement.

Also, the pointing shift predicted is somewhat different. Ray-

tracing methods predict a shift of 0.01472 degree per centi-
meter of lateral displacement, while GTD predicts 0.01346

degree per centimeter of lateral displacement.

Figures 7 and 8 show the predicted gain loss and pointing

shift, respectively, of the 70-meter antenna with focused sub-

reflector as functions of elevation angle. For each figure.

three sets of curves were generated: (1) predictions from tradi-
tional methods; (2) predictions from GTD analysis using the
subreflector focusing tables furnished by traditional methods;

and (3) predictions from GTD analysis with subreflector posi-

tion varied to maximize the predicted gain. If the gain is maxi-

mized by varying the subreflector position, the gain loss pre-

dictions of GTD analysis agree with those of ray-tracing analy-
sis to within a few hundredths of a decibel. This is considered

good agreement.

Figure 9 contains four curves. The two broken lines repre-

sent the subreflector offsets required to bring the virtual

image of the feed phase center into coincidence with the focus

of the best-fit paraboloid, while the two solid lines represent

the results of searching for the subreflector positions which

maximize the gain predicted by GTD analysis. Note that in

both cases, the offsets are measured from the original position

of the subreflector, in the main reflector coordinate system.

The agreement appears to be good in Z and poor in Y.



Vl. Conclusion

The predictions of traditional ray tracing and GTD analysis
have been compared in this article for subreflector displace-

ments and for the focused, gravity-deformed 70-meter an-

tenna. There is a significant difference in the gain loss pre-

dicted by the two methods for axial subreflector displacement,

and a large difference in the gain loss predicted for lateral

displacement. The pointing shift predicted for lateral dis-

placement is also somewhat different.

For the focused gravity-deformed antenna, the gain loss

predictions of the two methods show good agreement if the

subreflector position is varied to maximize the gain. It is

noteworthy that the pointing shift predictions show close

agreement between ray tracing and GTD analysis if the tradi-

tional subreflector focusing method is used. However, if the

traditional method of determining subreflector focusing off-

sets is used, the agreement for gain loss predictions is poor.

This study shows significant differences between the subre-

flector offsets that align the virtual image of the feed phase

center with the best-fit paraboloid focus and the offsets which

maximize the gain. Past studies have indicated that aligning

the main focus and feed phase center will yield good results in

maximizing the gain of paraboloid-hyperboloid systems. The

present results indicate that methods which compute the elec-

tric and magnetic fields are required to give good results when

dealing with shaped surfaces.
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Table 1. Comparison of predictions of gain ion caused by
subreflector lateral displacements

Lateral Gain loss, dB Gain loss, dB

displacement (traditional) (GTD)

_,* in +Y direction 0.23 0.55

in + Y direction 0.06 0.14

h in -Y direction - 0.56

h in +X direction - 0.56

*h = 3.548 cm (1.397 in.) at 8.45 GHz.

Table 2. Comparison of predictions of pointing shift caused by
subreflector lateral displacements

Lateral Pointing shift Pointing shift
displacement (traditional), deg (GTD), deg

;_* in +Y direction 0.05228 0.04776

h.
-_ m +Y direction - 0.02388

;_in -Y direction - 0.04775

h in +X direction - 0.04775

*h = 3.548 cm (1.397 irL) at 8.45 GHz.
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Fig. 1. RF center ray tracing and hyperboloid offsets

with gravity distortions
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Fig. 2. Use of deflected node coordinates to compute axial

(Z) coordinate of a grid point
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Fig. 3. Sequence of computations for calculating effects of gravity deformations and
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Fig. 4. Antenna geometry used in this study, looking into main

reflector from space
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Fig. 5. Antenna geometry, plane containing the feed phase center

and the main reflector Z axis
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